Time Fractional Diffusion Equations and Analytical Solvable Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approximate Analytical Solution of Coupled Nonlinear Fractional Diffusion Equations

In recent years, fractional reaction-diffusion models have been studied due to their usefulness and importance in many areas of mathematics, statistics, physics, and chemistry. In a fractional diffusion equation, the second derivative in the spatial variable is replaced by a fractional derivative. The resulting solutions spread faster than classical solutions and may exhibit asymmetry, dependin...

متن کامل

A semi-analytical finite element method for a class of time-fractional diffusion equations

As fractional diffusion equations can describe the early breakthrough and the heavy-tail decay features observed in anomalous transport of contaminants in groundwater and porous soil, they have been commonly employed in the related mathematical descriptions. These models usually involve longtime range computation, which is a critical obstacle for its application, improvement of the computationa...

متن کامل

Fractional chemotaxis diffusion equations.

We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modeling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macromolecular crowding. The mesoscopic models are formulated using continuous time random walk equations and the macroscopic models are formulated with fractiona...

متن کامل

Inhomogeneous Fractional Diffusion Equations

Fractional diffusion equations are abstract partial differential equations that involve fractional derivatives in space and time. They are useful to model anomalous diffusion, where a plume of particles spreads in a different manner than the classical diffusion equation predicts. An initial value problem involving a space-fractional diffusion equation is an abstract Cauchy problem, whose analyt...

متن کامل

Convolution quadrature time discretization of fractional diffusion-wave equations

We propose and study a numerical method for time discretization of linear and semilinear integro-partial differential equations that are intermediate between diffusion and wave equations, or are subdiffusive. The method uses convolution quadrature based on the second-order backward differentiation formula. Second-order error bounds of the time discretization and regularity estimates for the sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2016

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/738/1/012106